HEATING OF A SEMIINFINITE BODY BY A FINITE HEAT SOURCE IN THE
SHAPE OF A SQUARE

V. P. Kozlov, V, N, Lipovtsev, UDC 536.2.083
and G, P. Pisarik

We determine the three-dimensional, unsteady temperature field in a semiinfinite
body heated through a square region on its surface. The heat flux through the
square is taken to be an arbitrary function of time.

The time and space dependence of temperature fields in semiinfinite bodies heated by
finite heat sources of various geometrical shapes (circle, ring, strip, etc.) forms the
theoretical foundation for certain nondestructive methods (methods that do not destroy the
integrity of the sample) of testing the thermal and physical characteristics of materials
[1-3]. 1In the present paper we consider the three-dimensional, unsteady heat equation for
a semiinfinite (in the thermal sense) body heated through a finite square region on its sur-
face with a heat flux density q(tr) which is an arbitrary function of time.

Formulation of the Problem. We consider a semiinfinite body with a uniform initial tem-
perature Ty = const. For times T > 0 part of the surface of the body bounded by a square of
side 27 is heated by a specific heat flux density q(r) which is an arbitrary function of time.
The rest of the surface is thermally insulated. The problem is solved using Cartesian coordi-
nates, where the origin of the coordinate system (x = y = z = 0) is chosen on the surface of
the body in the center of the heated square region (see Fig. 1). It is required to find the
temperature field on the axis x =y = 0, z =20 of the body, and in particular at the center
(x =y =z = 0) of the square on the surface of the body.

If we formulate the problem in terms of the temperature differences ©;(x, y, z, 1) =
Ti(x, v, 2, T) — To with zero initial conditions for the ©j, then it will be necessary to
find the solution of a system of four heat equations

s y T
a0, (x, y, 2, )= i 82D o5
ot
where 1 = 1, 2, 3, 4; V’ei(x, v, Z, T) is the Laplacian in Cartesian coordinates. The prob~
lem is subject to the initial conditions
@i (xv Y, 2, T):O (2>

and the boundary conditions

Fig. 1. Model of a semiinfinite body (in

1
5 i the thermal sense) heated through a square
ar,c /k—-—]*-‘-—'—-—“j;j region on its surface by a heat flux den-
’// \\ : P sity q(t) which is an arbitrary function
s )k,/ﬂ’ of time. The rest of the surface: z = 0,
/s N x| >1, |y] > 1; is assumed to be ther-
e AN mally insulated.
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The solution for the Laplace transform 9,0, 0, z, s) on the axis z = 0 (x =y = 0) is
written in the form (s is the Laplace transform parameter)

8,0, 0, 2, 5) = ( VE VE) —
_ a6 et LIRS [ Jfﬂx (VE VEZTz‘z) dp —
A ‘l "\ Va
B T T
where 0 0
q(s) = 3061 (1) exp (— s1) dr. (20)

0

Applying the inverse Laplace transform to (19), we obtain the temperature difference
0,00, 0, z, T) forx =y =0,2z =0, 1> 0 in the form:

T

_ o B 22 q@ds
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Equation (21) evaluated at z = 0 gives an expression for the temperature difference at
the point x = y = z = 0 (the origin of the Cartesian coordinate system) when a heat flux den-

sity q(£) = q(1) acts over a finite square region on the surface of the body:
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Specifying the time dependence of the heat flux density q(t) in the square region (of
side 21) on the surface of the semiinfinite body, and integrating (21) and (22), we obtain
a series of particular solutions for 0,(0, 0, z, t) and ©0,(0, 0, 0, T). We assume that the
heat flux density in the square region on the surface of the bodyis constant intime, i.e., q(t) =
const. Then it is not difficult to obtain from (22) an expression for the temperature
= y=2=0 in the form:

qo =
difference on the surface at a point x
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where E,(Z) = —Ei(~Z) is the exponential integral [1]. 1If we introduce the dimensionless

quantities
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then we can write the solution (23) in the form
010,00 F) 2VFo VFo\Ya+)@n+2(+3)

Ki T Va Va s 3
(n+1) (n+2) (n+3)

i L — — =L
x {er 2 VR VR T VR
r+4) L Ne+Dn+2)(n+3)

5erfC2VFE}+n Ad‘_o 6 %

731



xfa+ £, [M] 3+ 9E, [—‘”—ﬁ)—z]+

4Fo 4Fo
(3] (442 (24)
+7(n+3)E1[ L } 5(n+4)51{-m—”.

In the limit 7 » =, (23) gives an expression for the_pne—dimgﬂéioqﬂl temperature field
00470, ©) = Toas (0, 1) — T, = 1im8,(0, 0, 0, 7) = 2q, Var/h V)= 2g, Vij(b Vn), where b = A/VYa is the
L-»00

thermal activity of the body. Hence the function
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will give the relative deviation between the temperature 0,(0, 0, 0, Fo) in the three-dimen-
sional case and the corresponding temperature in the one-dimensional case, for the special
case of a constant specific heat flux. Graphs of the function (25) are shown in Fig. 2.

The results (23) and (24) can be used to develop a nondestructive method of determining
the thermal and physical characteristics of materials (without destroying the integrity of
the sample) if a square heat source with constant power and small heat capacity is placed be-
tween two identical bodies in contact with the source, and the temperature excess is measured
at the center of the square heated from the instant the source is turned on.

When Fe << 1 the relative deviation §(Fo) << 0.003122. Then the thermal activity b can
be determined from the formula

2q01ﬂF
b= . (26)
Vne,0,0,0, v

We note that in the calculation of qo, the total heat power generated by the heater will
be divided equally between the two bodies when the constant power source is placed symmetric-
ally between the two identical bodies.

The thermal diffusivity can be determined from (24) by calculating the ratios of the tem-
peratures at different instants of time T > O (Fo > 0). The traditional method of determin-
ing a from the measured time dependence of the temperature at a single point of the sample
uses the experimental values of the ratio N' = 0,(0, 0, 0, pt,)/8,(0, 0, 0, T4) = e¥(, 0, 0,
pFo;)/G1(0 0, 0, Fo,) = f(p, Fo,), where p = T2/11 > 1, where it is assumed that multiple
measurements of the temperature excess (23) are available. The subsequent procedure then re-
duces to an analytical method of determining the argument Fo, from the known values of N' and
P

The thermal diffusivity is calculated from the formula

2
2 = £ Fo, (27)
Ty
The thermal conductivity and heat capacity per unit volume are determined from
A b
A=bVa; ey =— = . (28)
T e T Va

A graph of 0¥(0, 0, 0, Fo)/Ki = Gf/Ki = f(Fo) is shown in Fig. 3. For practical calcu-
lations Table 1 gives the values of this function for Fo in steps of 0.01, such that an ac-
curacy of (24) up to sixth figures beyond the decimal place is obtained.
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Fig. 2. Dependence of the relative percent deviation (error) &(Fo)
calculated from (25) on the number Fo.

Fig. 3. Dependence of N = ef(o, 0, 0, Fo)/Ki = f(Fo) (from (24)) on
Fo.

TABLE 1. Dependence of the Function Of(O, 0, 0, Fo)/Ki = f£(Fo)
(from (24)) on Fo

Fo | 0 1 | 2 | 3 | 4
0,00 0 0,035682 0,050462 0,061803 0,071364
0,0 0 0,112837 0,159576 0,195440 0,225670
0,1 0,355710 0,372620 0,388644 0,403877 0,418400
0,2 0,493723 0,504685 0,515276 0,525523 0,535433
0,3 0,588949 0,597022 0,604844 0,612495 0,619929
0,4 0,660725 0,666966 0,673045 0,878967 0,684795
0,5 0,716782 0,721708 0,726530 0,731182 0,735767
0,6 0,761068 0,764825 0,768611 0,772369 0,775852
0,7 0,795507 0,798416 0,801234 0,804047 0,806827
0,8 0,821327 0,823465 0,825545 0,827429 0,829375
0,9 0,839346 0,840783 0,841942 0,843196 0,844363
1,0 0,849794 0,850544 0,851117 0,851559 0,851888

Fo 5 | 6 7 | 8 9
0,00 0,079788 0,087403 0,094405 0,100925 0,107047
0,0 0,252283 0,276303 0,298325 0,318734 0,337798
0,1 0,432279 0,445563 0,458313 0,470565 0,482359
0,2 0,545040 0,554348 0,563375 0,572159 0,580670
0,3 0,627165 0,634216 0,641090 0,647808 0,654335
0,4 0,690423 0,695974 0,700553 0,706629 0,711800
0,5 0,740254 0,744608 0,748838 0,753015 0,757094
0,6 0,779367 0,782802 0,786091 0,789248 0,792417
0,7 0,809461 0,811985 0,814391 0,816757 0,819127
0.8 0,831383 0,833078 0,834612 0,836208 0,837775
0,9 0,845511 0,846485 0,847420 0,848192 0,849063
1,0 0,852280 0,852591 0,853069 0,852966 0,853047

This method of determining the thermal and physical characteristics assumes a thin square
heater of constant power. From the point of view of the difficulty of making a wire heater
in various geometrical shapes (such as a gquare, circle, ring, etc.) a square is preferable
in our opinion.

NOTATION

0,(x, v, X, T), temperature field in a semiinfinite body of the region |x| < I, |y| < I,
z >0, t >0, 0(%x, v, 2z, t), temperature field in the region ]xl <1, Ty] >, z > 0, 1> 0
Os(x, vy, z, 1), temperature field in the region Ix] > 1, lyT >, z 2 0, 1> 0, 0,(x, v, 2, T),
temperature field in the region |x| > Z, |yl <2 2z > 0, t > 0; q(1), heat flux density in a
prescribed square region on the surface of the body; a, ¢y, A, b, thermal diffusivity, heat
capacity per unit volume, thermal conductivity, and thermal activity of the body, respectively;
1, time; V?, Laplacian in Certesian coordinates x, y, z; s, Laplace transform parameter; Ko(X),
zero-order modified Bessel function of the second kind (the MacDonald function); erfc(X), com-
plement of the error function; E{(X) = —Ei(-X), exponential integral; Ki = qol/(ATo), Kirpichev
number; Fo = at/l?, Fourier number; OT(O, 0, 0, Fo) = 6,(0, 0, 0, Fo)/To, dimensionless rela~
tive temperature; N = OT(O, 0, 0, Fo)/Ki, discrete value of (24); see text; §(Fo), relative
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deviation of the temperature excess @f(O, 0, 0, Fo) for the three~dimensional case from the
corresponding quantity in the one~dimensional case, qo, constant heat flux density inside the
prescribed square region on the surface of the body; To, initial temperature of the body; 2I,
length of a side of the square heater; t,, time corresponding to Fo,.
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SANDWICH PLATE UNDER THERMAL IMPACT

V. V. Kharitonov, T. A, Starovoitova, UDC 536.24:534,1
and E. I. Starovoitov

An expression is obtained for the temperature field and the fluctuations excited
by a thermal impact are investigated.

The extensive application of laminated structure elements in industry arouses interest
in determining the temperature fields therein and in describing their dynamic behavior under
thermal force action. The vibrations of a circular single-plate excited by a thermal impact
are considered in the monograph [l]. Similar investigations are performed in this paper for
sandwich circular plates of nonsymmetrical thickness, assembled from materials with different
thermophysical and mechanical properties.

3
Let us consider an unlimited sandwich plate of thickness h=3#4, (k= 1, 2, 3; h,, hs
k=1

are the thicknesses of the outer layers and h, = 2c is the filler thickness), on whose outer
surface of the heat shielding layer 1 (z = ¢ + h,;) a thermal flux of density q; acts in a
direction normal to the surface. The outer plane of the carrying layer 2 (z = — — hy) is
assumed heat-insulated. A cylindrical r, ¢, z coordinate system is coupled to the filler mid-
dle surface, and the z axis is directed toward the layer 1. Under the mentioned heat-trans-
fer conditions the temperature field in the k~th layer of the plate Bz, t) =T —To (T, is
the initial temperature) satisfies the heat conduction equation

0r,.. = éh/aktv @
under the initial (t = 0, t is the time)
Ok (Z, 0) B 0 (2)
and boundary
MOy, = —qr (z=c+ M), 0, =0; MO, ., =10, (2= C),} 3)
0, = 05, 7\4202,; = }"363,: (z=—0), 92,2 =0 (z2=—c—h)

conditions. Here agt = Ai/(cktok) is the thermal diffucivity of the k-th layer, the comma in
the subscript denotes the operation of differentiation with respect to the subsequent coordi-
nates.

The solution of the boundary-value problem (1) under the initial (2) and boundary (3)
condition is executed by an operational method based on the Laplace transform {2].

Analysis of the analytical expressions obtained for the temperature fields in each of
the layers and comparing them with knowm solutions (for h; = O the field for a bilayer plate
presented in [2] follows, while for h, << hy we obtain the temperature field of a thin coat-
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